
Algorithms for Multi-Extremal Mathematical 
Programming Problems Employing the Set of 
Joint Space-Filling Curves 

R O M A N  G. S T R O N G I N  
Software Department, University of Gorky, Gagarin Ave., 23, Gorky 603600, Russia 

(Received: 15 October 1991) 

Abstract. Some powerful algorithms for multi-extremal non-convex-constrained optimization prob- 
lems are based on reducing these multi-dimensional problems to those of one dimension by applying 
Peano-type space-filling curves mapping a unit interval on the real axis onto a multi-dimensional 
hypercube. Here is presented and substantiated a new scheme simultaneously employing several joint 
Peano-type scannings which conducts the property of nearness of points in many dimensions to a 
property of nearness of pre-images of these points in one dimension significantly better than in the 
case of a scheme with a single space-filling curve. Sufficient conditions of global convergence for the 
new scheme are investigated. 
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1. Introduction 

One of the recent approaches to global optimization (see, e.g., Butz (1968), 
Strongin (1973)) is based on the idea of reducing the initial multi-dimensional 
multi-extremal optimization problems to equivalent one-dimensional problems 
using classical Peano-space-filling curves (some alternative approaches are 
viewed, for example, in Evtushenko (1985), Horst (1990), Korotkich (1989), 
Pinter (1988), Rinnooy Kan and Timmer (1989)). Numerical methods for the 
arising problem of computing this type of map are described in Butz (1971), 
Strongin (1978, 1990) and in Gergel et al. (1987). Optimization schemes for 
one-dimensional problems generated by this approach are suggested and investi- 
gated in Strongin (1973, 1978, 1984, 1989, 1990) and in Strongin and Markin 
(1986, 1987). These algorithms are substantially global and do not make use of 
penalties in treating constraints (each constraint is provided with a separate 
account). 

Some disadvantage of this approach is in the fact that one-dimensional problem 
obtained by the above reduction leaks some information on the closeness of 
iteration points in the initial multi-dimensional space (two close images in the 
multi-dimensional hypercube may have substantially non-close pre-images in the 
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real axis interval mapped onto the hypercube by the space-filling curve). To 
overcome this obstacle, it was suggested to store all pre-images for each iteration 
point (close images will always have some close pre-images). But, in this case, the 
amount of pre-images to be stored grows exponentially with the increase of 
problem dimensionality (see Strongin (1978)). 

Here is introduced a new scheme which allows us to reflect, in the case of the 
reduced one-dimensional problem, some essential information on the nearness of 
iteration points in the initial multi-dimensional domain. In this scheme, the 
amount of additional information for each iteration point does not depend on the 
dimensionality. Primarily, the ideas of this scheme were tested in pattern- 
recognition problems (see Gergel et al. (1987)). 

2. Algorithm with a Single Scanning 

PROBLEM.  Let us consider the N-dimensional problem 

min{~(y) :yED,  gi(y)<-O, l<-i<~m}, (2.1) 

where the domain of search 

D={yE~N:-2-1<~yj<~2 -1, I~<j~<N},  (2.2) 

~N is the N-dimensional Euclidean space and the objective function q~(y) to be 
minimized (henceforth denoted by gm+l(Y)) and the left-hand sides gi(Y), 1 <- i <<- 
m, of the constraints satisfy Lipschitz conditions (with respective constants L i , 
1 ~ i ~< m + 1) and may be multi-extremal. It is admitted that functions gi(y) are 
defined and computable only at the points y C D satisfying the conditions 

gk(y)<~O, l<~k<i.  (2.3) 

This property will be referred to as the partial computability of problem func- 
tionals. 

The feasible domain associated with the problem (2.1) may be presented in a 
more unified form by introducing the additional constraint 

go(Y) <~0 (2.4) 

with the left-hand side 

go(y)=max(iyj[-2 l : l ~ < j ~ < U ) .  (2.5) 

This unification is a provision for simplicity of notation in the following definition. 

DEFINITION: A point y~ is said to be an e-reserved solution to the problem 
(2.1) if 

~o(y~)=min{~(y): y E ~  N, gi(y)<~-ei, O<~i<~m}, (2.6) 

where go(Y) is from (2.5) and e = ( e 0 , . . . ,  era) is a vector with positive coordi- 
nates ("reserves" for each of the corresponding constraints). We also introduce a 
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set 

V ={yENN:gi(y)<-O, O<~i<-m, ~(y)~<q)(y~)} (2.7) 

of admissible points for the problem (2.1) which are no worse (in the value of the 
objective function q~) than the e-reserved solution. This set contains a point of 
attraction for the algorithm we suggest below. 

The existence of an e-resdrved solution to the problem (2.1) plays (see Section 
4) the role of the regularity condition somewhat similar to other forms of 
regularity requirements in classical nonlinear programming problems (see, e.g., 
Kuhn and Tucker (1951)). 

SPACE-FILLING CURVES. To introduce some necessary concepts and nota- 
tion, we provide a brief description of Peano-type maps. Without loss of 
generality, we shall conduct this consideration following the scheme suggested by 
Hilbert. 

Let us divide the hypercube D from (2.2) into 2 N equal hypercubes of 
"first-partition" by cutting D with the set of N mutually orthogonal hyperplanes 
(each plane is parallel to one of the coordinate ones and passes through the 
middle points of D edges orthogonal to this hyperplane). Then we divide (in the 
above manner) each of the obtained first-partition hypercubes into 2 N second- 
partition hypercubes. Continuing this process, i.e., consequently cutting each 
hypercube of a current partition into 2 N hypercubes of the subsequent partition 
(with twice shorter edge length), we shall obtain hypercubes of any Mth partition 
with the edge-length equal to 2 -~t. The total number of subcubes of the Mth 
partition is equal to 2 MN. 

Next, we cut the interval [0, 1] on the x-axis into 2 N equal parts. Then, once 
again, we cut each of these parts into 2 N smaller (equal) parts, etc. The 
subinterval of the Mth partition is designated d(M, v), where v is the coordinate 
of the left end-point of this subinterval. The length of d(M, v) is equal to 2 MN. 
We assume that v E d(M, v), but the right end-point of this subinterval does not 
belong to it (with the exception: if the right end-point is equal to 1, then it 
belongs to this subinterval). 

Now, we establish a mutually single-valued correspondence between all subin- 
tervals of any particular Mth partition and all subcubes of the same Mth partition 
and, henceforth, notation D(M, v) will stay for the subcube corresponding to the 
subinterval d(M, v) and vice versa. We demand this correspondence to satisfy the 
following requirements: 

CONDITION 1. D ( M + I , v ' ) ~ D ( M , o " )  if and only if d ( M + l , v ' ) @  
d(M, v"). 

CONDITION 2. Two subintervals d(M, v') and d(M, v") have a common 
end-point (this point may only be either v' or v") if and only if the corresponding 
subcubes D(M, v') and D(M, v") have a common face (i.e., these subcubes must 
be contiguous). 
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A constructive way of establishing such a correspondence is described and 
substantiated in Strongin (1978, 1990) and in Gergel and Strongin (1987), but the 
details of this scheme are not essential for the consideration we carry out here (as 
far as it is already proved that both of the above conditions could somehow be 
met). For the accepted correspondence of subintervals and subcubes we stipulate 
the third requirement: 

CONDITION 3. I f xEd(M,v)  theny(x) ED(M,v) ,  M>~I. 

This last condition defines a single-valued continuous map y(x) (note, that for any 
given integer M ~> 1 and for any given point x E [0, 1] there is just a single 
subinterval of the Mth partition containing x; the continuity is a consequence of 
Conditions 1 and 2). The center yC(x) of the subcube of the Mth partition 
containing the point y(x) may be interpreted as a discrete approximation to y(x) 
and, in this case, the inequality 

max{ly~(x ) - y,(x)l : 1 ~<j <~ N} ~< 2 -(M+I) (2.8) 

indicates the approximation accuracy, which may be governed by the choice of 
the number,  M, of the partition employed. The function yC(x) corresponding to 
the particular value of M maps the uniform grid having the step-size equal to 
2 -MN in the interval [0, 1] onto the uniform grid in the hypercube (2.2) having the 
step-size equal to 2 -M (in each coordinate). 

R E D U C T I O N  TO ONE DIMENSION. Employing the continuous single- 
valued Peano curve y(x) mapping the unit interval [0, 1] on the x-axis onto the 
N-dimensional domain (2.2), it is possible to find the minimum in (2.1) by solving 
the one-dimensional problem 

p(y(x*))=min{q~(y(x)): x E [ 0 , 1 ] ,  gi(y(x))<~O, l<~i<~rn}, 
(2.9) 

where (due to (2.3)) the functions &(y(x)) are defined and computable in the 
domains: 

Q1 = [0, 11 , Q,+I = {x E Q, : &(y(x)) <~ 0} , 1 -< i <- m ,  (2.10) 

and 

[0, 1] = Q1 D Q2 ~ " "  ~ Qm+l ~ Qm+2 = ~J (2.11) 

(the empty s e t  Qm+2 is introduced to simplify the subsequent notation). 

ITERATIONS.  Each iteration of the proposed method starts by determining an 
iteration point x ~ (0, 1) (in accordance with the decision rules given below) and 
prolongs by computing v = v(x), where v - 1 is the number of constraints which 
are satisfied at this point (this number is referred below also as an index), and the 
value 
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f (x )  = g~(y(x))  (2.12) 

corresponding to x and u(x). Hence,  the subscript v = t,(x) from (2.12) is given by 
the conditions: 

x E Q~ and x ~ Q v +  1 , (2.13) 

and for it we have the inequalities 1 ~ ~,(x) ~< m + 1, x E (0, 1). The existence and 
uniqueness of the index follow from the inclusions (2.11). Function f (x )  is either 
the value of the left-hand side of the first constraint violated at the point x (this is 
if v ~< m), or f ( x )  is the value of the function to be minimized (this is if 
v = rn + 1). The above response (i.e., the pair z,(x), f (x) )  is to be obtained by 
successive computing values of functions g~(y(x)),  1 <~ i ~ v, at the point x. The 
calculations are terminated when either the inequality g , ( y ( x ) )  > 0 or the equality 
v = rn + 1 is satisfied. Figure 1 illustrates the above concepts and notation. 

R E D U C T I O N  TO AN U N C O N S T R A I N E D  CASE. The main idea the pro- 
posed technique is based upon is to reduce the conditional problem (2.9) to the 
unconditional problem: 

+(x*) = min(&(x) : x E [0, 1 ] ) ,  (2.14) 
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Fig. 1. Behavior  of f(x)  ( the solid line) and its relations with partially computable 
functionals g l ,  g2 and q~. Function 4t(x) coinciding with f(x), while x ~  Q~/Q3, and not  
coinciding ( the dotted line) with f(x), while x ~ Q3, is from the connected auxiliary 
non-l inear problem (2.14). 
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0,  v(x) <~ m ,  
~(x) = f ( x ) -  q~(y(x*)) , v(x) = m + 1,  (2.15) 

where x* is from (2.9) and v = v(x) is from (2.13). The sets of solutions of 
problems (2.9) and (2.14) are the same, since the function 4' is strictly positive at 
all points which are not a solution of (2.9), while it vanishes at points which are a 
solution. 

Functions gi (y (x) )  corresponding to Lipschitz functions gi(Y) (with respective 
constants Li ,  1 ~< i <~ m + 1) satisfy (see, for instance, Strongin (1978)) uniform 
H61der conditions: 

[g i (y(x ' ) )  - gi(y(x"))] ~ Ki( lx '  - x t ' l )  1 /N  , (X', X u) E Qi , 

with the respective coefficients 

K ~ = 4 L , V ~ ,  1 ~ < i ~ < m + 1 .  (2.16) 

By substituting the divided functions & ( y ( x ) ) l K i ,  1 <<. i <~ m + 1, into (2.12) and 
(2.15) instead of the initial ones, we obtain the function O(x) which in any subset 
Q / f r o m  (2.10) satisfies H61der conditions with unique coefficient K = 1. 

If functions &(y(x ) ) ,  1<-i<~m + 1, admit H61der continuations in all the 
interval (0, 1), then for any point x ° E (0, 1) with the given value 4,(x °) it is true 
that 

4~(x) 1> 0(x °) - (Ix - x°[) I/N , x E (0, 1). 

These inequalities are sufficient for estimating a location of x* after a finite 
number of function evaluations, though the function 4' may have discontinuities of 
the first kind at boundary points of Q~. After k function evaluations at 

1 k 
X , . . . , X  : 

x* E {x E [0, 11: (Ix - x f l )  1 IN > I l t ( x  i )  - II t+  , 1 <~ i <~ k } ,  (2.17) 

where q~+ is the best known estimate, i.e., 

~0 + = q,(x +) = min(g,(x~): 1 ~< i ~< k} (2.18) 

(see Figure 2). Thus, to minimize the univariate function O(x) we may apply some 
modification of the generalized algorithm of global search from Strongin (1973) (a 
particular modified version is presented below) or to develop some similar 
generalizations of saw-tooth covers (e.g., from Hansen el al. (1991), Piyavskii 
(1972) or Sukharev (1971)). 

The particular technique we are to implement (the index method)  is based on 
the above considerations and proposed in Strongin (1984) and in Strongin and 
Markin (1986, 1987). According to this method, the unknowns q~(x*) and K~ 
appearing in (2.15) and in the divided functions g i ( y ( x ) ) / K i ,  1 ~< i ~< m + 1, are 
replaced by running estimates. 

A L G O R I T H M .  The first iteration is carried out at an arbitrary point x E (0, 1). 
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L 

Fig. 2. Case N = 1, k = 4. The union of subintervals shaded below the x-axis is an estimated 
complement of a set (2.17) and it does not contain the optimal point x*. Point x + is the best 
known estimate from (2.18). 

The  choice of  any subsequent point  x k+l, k />  1, is de te rmined  by the following 

FU/SS 

Rule 1. The  points  x 1, . . . ,  x k f rom the previous  i terat ions are r enumbered  by 

subscripts in increasing order  of  the coordinate ,  i .e. ,  

0 = x 0 < x  1 < .  • • < x  i < . . -  < x  k < x ~ +  1 = 1 (2.19) 

and associated with the values z i = f(xi), 1 <- i <~ k, compu ted  at these points  ( f i s  

f rom (2.12)).  The  points  x 0 = 0 and x~+ 1 = 1 are addit ionally in t roduced into the 

series (2.19) ( the values z 0 and zk+ 1 are undefined) .  

Rule 2. By construct ing the sets: 

I ~ = { i : l < < - i ~ k ,  u=u(x i )  ) ,  l ~ < v ~ < m + l ,  

all subscripts i, 1 ~< i <~ k, in the series (2.19) are classified with respect  to the 

n u m b e r  of  constraints  met  at the cor responding  points  x~. These  sets are uni ted as 

S ~ = I o U . . . U I ~ _ I ,  T ~ = I ; + I U " ' U I m + 2 ,  l ~ < u ~ < m + l ,  

where  I 0 = {0, k + 1}, In+ 2 = 0 and i@ S, ( i E  T~) if u(xi) < v (v(xi)> v). 
Rule 3. R u n n i n g  lower  bounds :  

p, =max{Izj--  z i l (x j - -x i ) - l /u:  i, j @ I ~ ,  i < j }  (2.20) 

for  respect ive H61der 's  coefficients (2.16) of  functions g~(y(x)), 1 <~ v <~ m + 1, 
are calculated.  If  the set I v contains less than two elements  or  i f / z  f rom (2.20) is 

equal  to zero,  it is assumed that  / z  = 1. Formula  (2.20) directly implies that  

es t imates  / z  are non-decreas ing  while iterating. 
Rule 4. For  all n o n - e m p t y  sets I ,  1 ~ v ~< m + 1, values 

. f - e~,  if T~. ¢~J ,  
z ~ = ~ m i n { z ~ . i E l ~ } ,  if T , = 0 ,  (2.21) 

are  de te rmined  (real number s  e~, 1 ~< v ~< m,  are positive parameters correspond-  
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ing to coordinates of a pre-assigned vector of reserves from (2.6)). The running 
value ~ = min{ v: T~ = ~} indicates the "running objective function" g ~ ( y ( x ) )  the 
algorithm is minimizing and z* is a best non-increasing (and positive if a ~< m) 
upper  bound for the minimal value of this function. So that some different 
functions g i ( y ( x ) )  may play this role until a attains the value m + 1. In the last 
case, z~+ 1 is a best running estimate for q~(y(x*)) from (2.9). 

R u l e  5. For each interval (xi_ 1 , xi), 1 ~< i ~< k + 1, the value R ( i )  (called the 
character is t ic)  is computed, where 

R ( i )  = A i + ( z  i - z i_ l )2 / /x  2 A i 

- 2 ( z i + z i _  1 - 2 z * ) / r / x  , i - 1 ,  i e I ~ ,  (2.22) 

R ( i ) = A i - 4 ( z i - z * ) / r l x  , i E I , ,  i - I E S , , ,  (2.23) 

R ( i ) = A i - 4 ( Z i _ l - Z * ) / r t x  , i - l E f t ,  i E S ~ ,  (2.24) 

A i = (x  i - x , _ i )  ,IN , (2.25) 

(here r is a p a r a m e t e r ,  with a value greater than 1, which allows us, by proper  
choice of r, to use the product r /x  as an upper bound for H61der's coefficient K~ 
from (2.16); this consideration will be continued in Section 4). 

R u l e  6. The interval (x,_~, x,) with the maximal characteristic 

R ( t )  = max{R(/) :  1 ~< i ~< k + 1} (2.26) 

is determined.  If v = u (x , )=  ~,(x t ~), then the next iteration is carried out at a 

point 
x k+i = (x ,  + x ~ _ t ) / 2  - sign(z~ - z,_l)[Iz , - z~_ l l / I x~ lU/2r .  (2.27) 

Otherwise, i.e., if ~,(x,) ¢ v (x ,_~ ) ,  the second term in (2.27) is omitted. 
The above algorithm may be supplied with the t e rmina t ion  rule (see Strongin 

(1973)), which stops iterating if A, from (2.25) is less than the given tolerance (t is 

from (2.26)). 
Global c o n v e r g e n c e  cond i t ions  for this algorithm (for the case when all e. from 

(2.21) are zero-valued) are considered in Strongin and Markin (1986, 1987). This 
consideration employs the assumption that all domains Q~ from (2.11) are the 
unions of a finite number of intervals of positive length. Here  we use a less 
rigorous requirement  of the existence of an e-reserved solution and this conver- 
gence study deals with a more general algorithm from Section 4. 

C O M M E N T  1. The algorithm described above may be interpreted as some kind 
of saw-tooth cover. But the origin of this technique is based on a stochastic model 
representing the functions g i ( y ( x ) )  (see Strongin (1978, 1989)). Within the 
framework of this model, a Gaussian distribution is assumed for the increments of 
these functions depending on the location of global optimizers. Maximum likeli- 
hood estimates for global optimizers (based on respective posterior densities 
obtained after a number of function evaluations) are treated as points of 



S E T  O F  J O I N T  S P A C E - F I L L I N G  C U R V E S  365 

iterations. This idea (after some transformations caused by the fact that the 
function (2.15) is piecewise presented by arcs of functions g~(y(x))) leads to the 
formula (2.27), which may be viewed as a point estimate for a global optimizer. 
Some alternative stochastic decision rules for unconstrained univariate global 
optimization are viewed, for example, in Betro (1991) and 2;ilinskas (1981). 

COMMENT 2. It is possible to generalize this algorithm for solving multiple 
criteria problems (see Strongin et al. (1988)) and for implementation on multi- 
processor systems (see Sergeev and Strongin (1987, 1989)). 

3. Set of Joint Scannings 

Let us consider the interval [0, L + 1] on the x-axis and the family of hypercubes 

Dt={yENN:--2-1<~yj+2-l<~3*2 -1, I<~j<~N}, O<~I<~L, (3.1) 

where the hypercubes D l are obtainable by translation of hypercubes D~ 1 along 
the main diagonal with the displacements equal to 2 -I (in each coordinate). 
Figure 3 presents the case L = N = 2. 

Suppose that y°(x) maps the interval [0, 1] on the x-axis onto the hypercube D O 
from (3.1), i.e., 

Do:{Y°(X): x ~ [ 0 ,  11}, (3.2) 

and this map is defined following the scheme presented in Section 2, i.e., y°(x) is 
a space-filling curve. Any subcube of the Mth partition of the hypercube D O 
generated by this definition has an edge-length equal to 2 -(M 1) and, henceforth, 
is designated Do(M, v), where v has a unique value for each particular subcube (v 
is the left end-point of the subinterval d(M, v) linked with Do(M, v) by the 
definition). The map y°(x) and the equalities 

y;=yl 1 ( x ) + 2 - I ,  I ~ j ~ N ,  l<~l<~L, (3.3) 

define the curves J(x) mapping the interval [0, 1] onto respective hypercubes D l, 
1 ~< l ~< L, from (3.1). Hence, the curve 

Y(x) = ylXl(x - [x]) ,  x E [0, L + 1),  (3.4) 

where Ix] is the integer part of x, maps the interval [l, l + 1) into the hypercube 
D l, 0 ~< l ~< L. From (3.3), for each particular element Do(M, v) of the Mth 
partition of the hypercube Do, there exists the element Dr(M, v) of the Mth 
partition of the hypercube DI, and this element may be obtained by translating 
Do(M, v) along the main diagonal at the distance 2 -I + 2 - 2  ÷ • • • + 2 - I  (in each 
coordinate). Subcubes D0(2 , 5/8) and Dl(2, 5/8) are depicted in Figure 3. As 
follows from (3.3) and (3.4), if d(M, t;) C [0, 1) is juxtaposed to Do(M, u), then 
there exist a set of subcubes 
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Fig. 3. 

D t ( M , v ) = J ( d ( M , v ) ) ,  l<~l<~L, 

linked with the subintervals 

dl(M, v t ) C [ l , l + l ) ,  v = v t - [ v ~ ] ,  O < ~ l ~ L ,  

where d(M, v) = do(M , vo) , v = v o, and 

D,(M, v) = Y(d~(M, v~)), 0<~ l<~ L .  (3.5) 

Taking account of the obvious inclusion D C D~, 0 ~< l < L, it is possible to 
present the initial hypercube (2.2) in any of the following forms (see Figure 3) 

D = { Y ( x ) : x ~ [ l , l +  l),go(Y(x))<~O}, O ~ l < ~ L ,  (3.6) 

where go(Y) is from (2.5). Hence, the scanning (3.4) covers hypercube (2.2) 
L + 1 times, while x varies from 0 up to L + 1. This is the reason to refer to the 
curve Y(x) from (3.4) as the multiple scanning. As a consequence, any point 
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y E D has its pre-image x l in each interval [l, l + 1), i.e., 

y = y [ X q ( x - [ x ' ] ) ,  x l ~ [ l , l + l ) ,  0 ~ < l ~ L ,  (3.7) 

(see Figure 3). The next statement exhibits the property of curve (3.4) we aimed 
to achieve by introducing the above construction. 

T H E O R E M  1. Let a point  y* f rom the domain o f  search (2.2) be contained in a 
line segment with end-points y', y" E D meeting the requirements: 

Y - Y j  <~ , Y i - Y i - Y i ,  l<~i<~N,  i e j ,  (3.8) 

where p is an integer and 1 <~ p <~ L (i. e., the segment is collinear with the jth axis 
in NN). Then the curve (3.4) assures the existence o f  an integer number l, 
0 <~ l <~ L,  and o f  pre-images x*, x', x" E [l, I + 1) satisfying the following condi- 

tions: 

y* = Y ( x * ) ,  y ' =  Y ( x ' ) ,  y "=  Y(x") (3.9) 
and 

max{Ix' - x ' l ,  I x " -  x ' l ,  I x ' -  x"l} <~2 -pN • (3.10) 

C O M M E N T  3. The conditions (3.8) introduce a particular type of 2-P-vicinity 
of the point y*. This vicinity comprises all the "neighbours" of the given point y* 
differing from this point in the j th coordinate, but with differences not exceeding 
2 -p (the range for p depends on the number L of the scannings employed).  By 
changing j, 1 ~< j ~< N, in (3.8), it is possible to obtain the neighbours in any N 
coordinate directions. 

As is stated in the theorem, any two neighbours from the j th 2-P-vicinity of y* 
will have at least two pre-images in 2 PU-vicinity of some pre-image x* on the 
x-axis. This is the way the inverse multivalued mapping y - l ( y )  reflects the 
property of closeness in ~N in any N direction. 

Proof. (1) The edge-length for both Dl(l, v) and D t ~(l, v) is equal to 2 -(l-1~, 
and Dr(l, v) may be obtained by translation of Dl_l(l,  v) with displacements equal 
to 2 t in each coordinate. As a consequence , the center of D~(l, v) is simulta- 
neously a vertex of Dl_~(l, v) and, vice versa, the center of Dz_~(l, v) is a vertex 
of Dl(l, v) (as an illustration of this fact, the subcubes D0(1 , 3 /4)  and DI(1, 3/4)  
are singled out by the hatching in Figure 3). Thus, the union of all vertices of all 
subcubes Dl(l , v) and Dt_l(l,  v), which are contained in the hypercube D from 
(2.2) (l is supposed to be fixed), forms a 2-Z-net (in each coordinate) in the 
domain of search. 

(2) By assumption (3.8), points y', y" are either both in the same subcube 
D p ( p  + 1, v) (see Case 1 in Figure 4) or they are in the two different contiguous 
subcubes: 

D'  = Dp(p  + I, v ' )  , D "= Dp(p  + l ,  v'') 
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having a common (N - 1)-dimensional face orthogonal to the j th coordinate axis. 
In the last case, the subcubes D', D" are either the elements of a next partition of 
some subcube D~,(p, w) (see Case 2 in Figure 4) or 

D ' C B ' = D p ( p , w  ') and D"CB"=Dp(p ,w") ,  

where the subcubes B'  and B" are contiguous and have the common face 
containing the common face of the subcubes D '  and D" (and thus orthogonal to 
the ]th coordinate axis). In this final case (see Case 3 in Figure 4), D '  and B'  have 
the only common vertex yc which is also the only common vertex of the subcubes 
D" and B". 

Hence,  taking account of part 1 of this proof, we may state that the point yC as 
a vertex of the subcube Dp(p, w') is simultaneously the center of some subcube 
Dp_ t (P, u) containing D' LJ D", because the center yc is the common vertex of D' 
and D", i.e., in any case, there exists some subcube Dl(p,u ), l<~p<~L, 
containing the points y' ,  y" and the point y* in the line segment between y '  and 
y". The subinterval dl( p, u~)C[l ,  l +  1) corresponding to the above subcube 
contains the pre-images x*, x', x" of the points from (3.9). The length of dr( p, ul) 
is equal to 2 -pN and, thus, the statement (3.10) holds true. [] 
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4. Algorithm with a Multiple Scanning 

R E D U C T I O N  TO ONE DIMENSION. With the use of Y(x)  from (3.4) and 
taking into account (3.6), the initial problem (2.1) may be reduced to the 
following one-dimensional problem: 

min{~(Y(x))" x E [ 0 ,  L + I ) ,  gi(Y(x))<~O, O<~i<~m},  (4.1) 

where the functions gi(Y(x))  are defined and computable in the domains Qi: 

Q0 : [0, L + 1) ,  (4.2) 

Q i + I = ( X E Q i :  g , (Y(x))<~O},  O<~i<~m. (4.3) 

The algorithm from Section 2, being modified, is applicable for solving this new 
problem. 

ITERATIONS.  An iteration of the modified method at a (non-integer) point x q 
includes: 

(i) calculation of an index v = v(x q) meeting the conditions (2.13) (note that v 
is in the range from 0 up to m + 1 and the sets Q~ are from (4.2), (4.3)); 

(ii) computation of the value 

f ( x  q)  = g ~ ( Y ( x q ) )  ; (4.4) 

(iii) determination of the pre-images x ql, 0 <~ l <~ L,  from (3.7) for the corre- 
sponding point yq = Y(xq) .  Hence, an iteration at a point x q (note, that x q E 
{x q°, . . . ,  xqL} ) may be interpreted as L + 1 iterations at the points x q°, . . . ,  x qL 
with responses: 

q°)  . . . . .  qL)  = 

f ( x  q°) . . . . .  f ( x  qL) = f ( xq )  , (4.5) 

If v(x q) = 0 (i.e., if y q ~ D ) ,  then pre-images, which are different from x q, are 
not computed, and the set {x q°, . . . ,  x qL } is presented by {x q ) (i.e., in this case, 
the step (iii) is not performed). 

MODIFICATIONS.  Now we shall consider some modifications of the rules of 
the algorithm from Section 2 that have to be done to adapt this algorithm for 
solving the problem (4.1). 

Modification 1. In Rule 1 of the algorithm the set (2.19) has to be constructed 
by sequencing the points 

{X 10, X 1L X 20 X 2L X 30, . . . ,  . . . . . . .  . . . ,  x qL} U {0, 1 . . . . .  L + 1} (4.6) 

(points that are not existing due to the rules of step (iii) are omitted in the set 
(4.6)). Hence, k ~< (q + 1)(L + 1) - 1 and it is assumed that values z i correspond~ 
ing to the integer points x~ E 40, 1 , . . .  , L + 1) are undefined. To distinguish the 
number q of the last iteration being performed from the number k characterizing 
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the ordered set (2.19), the point x k+ ~ from (2.27) in Rule 6 is henceforth denoted 
by x q+l. 

Modification 2. Implementation of the additional constraint (2.4) widens the 
range of change for indices (a zero-value becomes attainable) which causes the 
introduction of modified sets: 

I _ ~ = { i : O < ~ i < ~ k + l ,  x ~ { 0 , 1 , . . . , L  + 1 } } ,  

I , , = { i : l < ~ i < ~ k ,  i y~I  ~, u = v ( x , ) } ,  

S ~ = I  I U . . . U I ; _  1, T ~ = I ; + I U . . . D I m + 2 ,  0 ~ < v ~ < m + l ,  

for the classification of subscripts in Rule 2. 
Modification 3. The formula 

/x~ = max max{[zj - zi[(x i - xi) -l/N" 
O ~ l ~ L  

i, j E I ~ ,  i < j ,  ( x ~ , x i ) C [ l , l +  l )}  (4.7) 

has to be used instead of (2.20) in Rule 3. 
Finally, the first iteration is to be carried out at any arbitrary point y~ E D 

(which must have pre-images x xJ in all the subintervals [l, l + 1), 0 ~< l <~ L, to 
ensure the equalities (4.5)). All the other rules hold true. 

T H E O R E M  2. Assume that the following conditions are satisfied: 
(1) the problem (2.1) has an e-reserved solution y~ from (2.6); 
(2) functions gi(Y), 1 <~ i <~ m + 1, admit Lipschitz extensions Gi(y ) (with 

respective constants Li) over each domain D l from (3.1), i.e. 

g~(yl(x)) = Gi(y l (x) ) ,  x @ Q~ (-') [l, l + 1) ,  0 <~ l ~< L 

(note, that go(Y) from (2.5) is Lipschitz in any domain D t, 0 <~ l <~ L and, thus, we 

may admit G O =- go); 
(3) parameters e i , 0 <~ i <~ m, in the formula (2.21) have the same values as the 

corresponding coordinates of  the vector e in (2.6); 
(4) since some step (i.e., if  k in (2.19) is sufficiently large), values IX~, 

0 ~ u <~ m + 1, from (4.7) are meeting the inequalities: 

rt% > 1 6 L ~ ,  0 ~ u ~ < m + l .  (4.8) 

Then any accumulation point )7 of the sequence of iteration points {yn}~=~ 
generated by the described modified algorithm satisfies the conditions: 

~()7)=inf{q~(yn):  n E N , ,  g~(yn)<~O, O<~i<~m}<~q~(y~), (4.9) 

where ~1 is the set of  integers >!1. 
Proof. To be more observable, the proof is separated into successive steps. 

First three steps are given by lemmas presenting some intermediate statements 
under the conditions (1) - (4)  of Theorem 2. 
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L E M M A  1. For any accumulation point f o f  the sequence {yn}~=l, the algorithm 
generates an infinite nested sequence of  intervals: 

{(x,_ 1 , xt}: t = t(qP)}p=i (4.10) 

satisfying the conditions: 

~ ~ [xt_ 1 , xt] ,  (4.11) 
p = l  

lim A = 0 ,  (4.12) p---+ ~ 

lim R(t (qP))  <~ 0 ,  (4.13) p - + ~  

where ~ is some pre-image o f  y, q is the step-number f rom ( i ) - ( i i i )  and 
q <1 q2 < . . . , .  R(t) ,  A and t are f rom (2.22)-(2.24),  (2.25) and (2.26), respec- 
tively. 

q Proof. At least for one subinterval [s, s + 1), 0 ~< s ~< L, the sequence {x } q=l 
produced by a repetitive use of (2.27) (recall the concluding remark from 
Modification 1) generates the subsequence of pre-images: 

{xqS: q E {qP};:l} (4.14) 

from (iii) converging to the accumulation point ~7 s E [s, s + 1) (i.e., 37 = Y07S)). 
Without loss of generality, we may assume that for each point x qs from (4.14) 
there is an interval (x,_l,  x,) from (2.19) with t from (2.26) satisfying the 
conditions: 

ys, xqS E (x,_l , x,) , t = t( qP) . (4.15) 

These intervals form the set (4.10) and ensure the validity of (4.11). 
From (2.27), (4.7) and (4.15), 

max{(x, - x q S ) ,  ( x  qs - x ,  i ) }  ~ ~l(Xt - x t - 1 )  , ( 4 . 1 6 )  

where 3' = (r + 1) /2r  < 1 (because of the constraint r > 1). As a consequence of 
(2.25), (4.16), we obtain the contraction property (4.12). If there are two intervals 
simultaneously (i.e., for the same integer k in (2.19)) containing a7 s (which means 
that £s is an end-point of both intervals), then the number t = t(q) is assigned to 
the one contracting in accordance with (4.12). 

From (2.21) and (4.4), 

z j = g ~ ( Y ( x j ) ) > ~ z  *, v = v ( x j ) ,  l<~j<~k.  (4.17) 

Thus, from (2.22)-(2.24),  (4.12), taking into account condition (2), we derive the 
statement (4.13). • 

L E M M A  2. There exists a step number h >i I satisfying the condition: 

u(x h) = m + 1. (4.18) 
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Proof. Let x~ ~ [l, l + 1), 0 ~< l ~< L, be a pre-image of y~ from the condition 
(1), and let j = j (q )  be the number of the interval [x~_l, xj] containing x~ at the 
qth iteration. From condition (2), extensions G~(Y(x)) ,  x E [l, l + 1), 0 ~  < ~ 
m + 1, must satisfy uniform H61der conditions with the fractional exponent 1 /N 
and with respective coefficients K~ from (2.16). Hence, 

z i = g~(Y(xj))  <~ g~(Y(x~)) + K~ A j ,  (4.19) 

where v = v(xj) and Aj is from (2.25). Similar inequality holds for zj i- From 
(2.6) and (2.21), 

l * 0 ~< v ~ m , (4.20) g,(Y(x~))  = g~(y~)<~-e ,  <~ z , ,  

and if we admit that for any integer h~>l  (4.18) is not true, then from 
(2.22)-(2.24) and (2.16), (4.8), (4.19), (4.20), we derive the inequality: 

R( j( q)) >~ zXj(rlx, - 4 K~) /rtx~ > 0.  (4.21) 

In accordance with (2.26) from Rule 6 and (4.13), (4.21), the interval [Xj_l, xj] 
containing x~ must be subdivided by some point (2.27). Repetition of this 
partitioning with q ~ ~ yields to an infinite nested sequence of intervals contract- 
ing to x~. Then y~, which is an internal point of the admissible domain (cf. (2.1) 
and (2.6)), is an accumulation point of {Y~}~=I and, thus, in its vicinity must be 
some feasible point yh = y ( x  h) with x h satisfying (4.18). • 

L E M M A  3. Any  accumulation point £ has a feasible image f = }7(2) and a nested 
sequence o f  intervals (4.10) satisfying the conditions (4.11), (4.12) and 

R( t (qP))  > 0 ,  P ~ I .  (4.22) 

Proof. From (2.21) and (4.18), for any q >/h 

* =min{zi :  i C  Im+l} (4.23) 

and there exists an interval (x,_l, i t ) ,  t = t(q), satisfying the conditions: 

max{v(x,_1), v(x,)} = m + 1, (4.24) 
* :e 

and either z,_ 1 = Zm+ 1 or z, = zm+ ~. If u(x,_l)  # u(x,) then from (2.23), (2.24), 
R( t (q) )  = A > 0. If u(x,_l) = u(x,) then by taking account of H61der conditions, 
we obtain inequality: 

max{z, i ,  z,} ~< Z*m+l ~- Kin+ 1 A 

which in conjunction with (2.22) and (2.16), (4.8) implies R ( t ( q ) ) >  At~2 > O. As 
was already mentioned in the proof of Lemma 2, Rule 6 and inequalities (4.13) 
and R ( t ( q ) ) >  0 ensure the existence of the sequence (4.10) contracting to some 
point £ (cf. (4.11)) and satisfying (4.12) and (4.22). 

Suppose that some accumulation point )7 is external to the closed feasible 
domain of the problem (2.1). From (4.11) and the continuity of Y(x),  x ~  
[l ,I  + l ) ,  O<~l<~L, 
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)7= = l V(x,_l) = 

Then,  all the points Y(X,_l), Y(x~), t = t(qP), p >~p', are also not feasible i f p '  is 
sufficiently large. Hence,  

v=max{v (X ,_ l ) ,V (x t )  } < m + l ,  t = t ( q P ) ,  p>~p ' ,  (4.25) 

and from (2.22)-(2.24), (4.12), (4.17), (4.23), (4.25) 

R ( t ( q P ) ) < - 2 e S r l  % < 0 ,  p>~p' (4.26) 

(with p '  large enough). But from Rule 6, (4.22) and (4.26), the interval (x,_l,  xt) 
could not be subdivided by iterations if p '  is large enough. Therefore, our 
assumption that )7 is not feasible must be false. • 

Proof o f  Theorem 2. (1) We shall prove the left equality in (4.9) by validating 
the relation: 

~< * (4.27) 9 ( Y )  - z +1 

for the feasible accumulation point )7 = Y(£) of the sequence {yn}~_ 1 which exists 
by Lemma 3. By this lemma, there is a nested sequence of intervals (4.10) 
contracting to £ (cf. (4.11), (4.12)) and satisfying the conditions (4.24). Supposi- 
tion that (4.27) is not true implies the inequalities: 

Zi > Zm+l + 6 if v(xi )= m + l , i=  t -  l ,  t , (4.28) 

where t = t(qP), p E IN1, and 6 is some positive real number. From (2.22)-(2.24), 
(4.24), (4.28) with account of (4.12), 

R(t(qP)) < 2A t - 46/rtXm+ a < -26/rlXm+1 < 0,  (4.29) 

where p ~>p' and p '  is sufficiently large. But (4.29) contradicts the inequality 
(4.22). Hence,  (4.27) must be true. 

(2) Now, we shall prove the right inequality in (4.9) by demonstrating that for 
any real/3 > 0 the relation: 

q~(y~) ~< z*+1 - / 3  (4.30) 

must not be true for sufficiently large values of n. Suppose the contrary, i.e., that 
(4.30) holds true at any step q for some fixed value/3 > 0. 

From (4.18), the interval [x~_l, xj], j = j(h), containing the point x1~, which was 
introduced in the proof of Lemma 2, must satisfy the equality (4.24). Then, from 
(4.19), (4.24) and (4.30), 

~< * - Aj if u ( x i ) = m + l  i = j - l , j  Z i ~ Z t n + l  /3 -F K m +  1 , , 

which in conjunction with (2.22)-(2.24), (2.16) and (4.8) implies: 

R( j( q)) > 4/3 /rl.tm+ ~ > O. (4.31) 

But (4.31) contradicts (4.13): on the one hand, in accordance with Rule 6 (cf. 
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(4.13), (4.31)) the interval [xj_~, xj] should contract (cf. (4.12)), but on the other 
hand, by Lemma 1, the interval contracting to a pre-image of an accumulation 
point must satisfy (4.13). Hence,  the infimum of Zm+~, which is the middle part of 
(4.9), does not exceed q~(y~). • 

T H E O R E M  3. Assume that under the conditions of  Theorem 2 the point 17, 
which is not locally optimal to the problem (2.1), has a vicinity 

U p ( ) 7 ) = { y E ~ N :  ]yj--)Tj]<~2 P, I<-j<~N} 

comprised of  feasible points, i.e., 

gi(y)<~O, O<~i<~m, y E U p ( f ) .  (4.32) 

Then 17 is not an accumulation point of  the sequence {y"}~=~ generated by the 
above algorithm if 

L / > p  + 2 ,  (4.33) 

where L is from (3.4). 

C O M M E N T  4. As follows from Lemma 3 and (4.9), any accumulation point 37 
of {Y"}2-1 belongs to Y~ from (2.7). Theorem 3 singles out the subset of Y~ which 
could not contain accumulation points. This subset depends on the number of 
scannings employed in the algorithm. 

Proof. First we prove some preliminary statements. 

L E M M A  4. Under the conditions of  Theorem 3 

)7 E int D O C Up()7), (4.34) 

where D o containing )7 among its internal points is an element of  the lth partition of  
either D l 1 or D l from (3.1), l <~ L (see Section 3). 

Proof. From )7 E D C D~, 0 ~< l ~< L, there exists Dp+l( p + 1, v) with the edge- 
length equal to 2 -p and 

f i e  Dp+I( p + 1, v) C Up()7), 

where )7 is either an internal point or a border point of De+l( p + 1, v). The last 
case we split into two subcases. The first subcase, is when 17 is not contained in 
any hyperplane orthogonal to some edge of Dp+l( p + 1, v) and passing through a 
middle point of this edge. The second case is when 17 is contained in such a 
hyperplane. 

In the first subcase, )7 is an internal point of some subcube Dp(p + 1, v'). The 
center of this subcube is a vertex of Dp+l( p + 1, v) (see Figure 5, Case 1, and 
part 1 of the proof of Theorem 1). 

In the second subcase, 37 is in the edge of some element Dp+ I(P + 2, w) C 
Dp+l( p + 1, v) (see Figure 5, Case 2, where 17 is a vertex of Dp+l( p + 2, w)). 
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Hence, fi is an internal point of some subcube Dp+2( p + 2, w'). This concludes 
the proof of (4.34). • 

Proof of Theorem 3. Let y0 be defined by the relation: 

q~(y0) = min{p(y) :  y E D °} < q~(37), (4.35) 

where the strict inequality is a consequence of the local non-optimality of 37. From 
(3.5) and by Lemma 4, D o= Y(d°), where Y( . )  is from (3.4) and d o is either 
d t 1(I, vl_l) or dr(l, vl), l <~ L, and let x ° designate the pre-image of y0 in the 
interval d ° 

Now, suppose that 37, which is an internal point of feasible set, is an accumula- 
tion point of {Y~}~=1- Then there should be some points of this sequence in D o 
(satisfying (4.32)) and some pre-images of these points in d °. Hence, there exists 
an interval (xt_~, x,) satisfying the following conditions: 

0 x @[xt_~,x,]Cd °, t = t ( q  p), p>~p',  (4.36) 

where p '  is large enough, and the end-points of this interval meet (4.24). If 
v(xt) = m + 1 then from (4.9), (4.27), (4.35) and with account of H61der condi- 
tions, 

z, ~#(Y(x,)) <~ ~(yO) + K,~+I A, < * = Z m +  1 + Km+ I A . 

Similar inequalities hold for z,_~ if v(x, 1) = m + 1. Thus from (2.22)-(2.24) and 
(2.16), (4.8), 

R(t(qP))> A,(rl~m+l -4Km+l)/rlXm+ ~ > 0 ,  p>-p ' .  (4.37) 
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Rule 6, (4.13) and (4.37) force  the  interval  (x~_~, x,) to be subdivided by s o m e  

poin t  (2.27),  and one  of  two subintervals  ob ta ined  by this subdivision will satisfy 
(4.36),  (4.37).  As  a consequence ,  y0 has to be  an accumula t ion  point  of  {y"}~=~ 

and,  f rom (4.35),  some  point  yq E D o C U p ( f )  will inevi tably mee t  the inequal i ty  

qo(y q) < q~(17) which is a contradic t ion to the left equal i ty  in (4.9).  The re fo re ,  17 
mus t  not  be  an accumula t ion  point  of  {Y~}2=1 under  the condit ions (4.32).  • 

N U M E R I C A L  E X A M P L E .  Figure 6 presen ts  the  i m p l e m e n t a t i o n  of  the above  
t echn ique  for  solving the  test problem: 

minimize  p ( y )  = 1.5y~ exp[1 - y~ - 20 .25(y  1 - y2) 2] + (0.5y~ - 0.5y2) 4 

(Y2 - -  1 )  4 exp[2 - (0.5y 1 - 0.5) 4 - (Y2 - 1 )  4 , 

subjec t  to 1 .21~<(y i  - 2.2) 2 + ( Y 2 -  1-2) 2 ~<2.25 , 

0 ~ y l ~ 4  , - 1 ~ < y 2 ~ < 3  

( the  objec t ive  funct ion is f rom Uosak i  et al. (1970)). The  search was t e rmina t ed  
by the rule A t~< 10 6. T h e  maps  e m p l o y e d  (L  = 8 )  were  a p p r o x i m a t e d  by 

OQ • • • 
• • • 4 • • • 

o 

• • 4 o  o • o  0 ~ • • 

• Oo • • 

• • Oqp oO 

• • 8' ° • • • 

; "  ] g 

O O 

• 3 

Fig. 6. The depicted square presents the domain of search, the narrow belt (lying inside the 
big circle and outside the small one) presents the admissible set. Level sets for the objective 
function are also plotted. Iteration points for the case L = 8 are marked by dark dots. The 
run with L = 1 (iteration points are not plotted) missed the global solution (cf. Theorem 3). 
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respective functions from (2.8) with M = 10. Reserves were given by ez = 10 -6, 
0~<i~<2, a n d r = 2 .  

After 150 iterations, the mixed scheme was employed to combine global 
iterations with local search (see Markin and Strongin (1987), and Strongin et al. 
(1988)). According to this scheme, each odd iteration is governed by the rules we 
have described. When performing the choice of even iterations, values R(i)  in 
(2.26) are replaced with 

where 

- 6  R * ( i )  : R ( i ) / [ ( T ( i ) )  I/N + 10 /~,,1, 

(Zi -- , 2 Zv)  

T(i) = ~ ( z i -  z ; ) (Ze  1 - z * ) ,  
i f  v = l,~(xi) >/I(xi_1) , 

i f  p = l J ( x i ) = / / ( X i _ l )  , 

i f  ~ = ~ ( x i - i )  > ~(x,), 

and R ( i )  is from Rule  5. 
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